P10. Resource-Constrained Airline Ground Operations: Optimizing Schedule Recovery under Uncertainty
Thematic Challenge
4 – Novel and more effective allocation markets in ATM
Category
Engage Version
Report
Thesis
Abstract
Air Traffic Flow Management (ATFM) and airlines use different paradigms for the prioritisation of flights. While ATFM regards each flight as individual entity when it controls sector capacity utilization, airlines evaluate each flight as part of an aircraft rotation, crew pairing and passenger itinerary. As a result, ATFM slot regulations during capacity constraints are poorly coordinated with the resource interdependencies within an airline network, such that the aircraft turnaround – as the connecting element or breaking point between individual flights in an airline schedule – is the major contributor to primary and reactionary delays in Europe.
This dissertation bridges the gap between both paradigms by developing an integrated schedule recovery model that enables airlines to define their optimal flight priorities for schedule disturbances arising from ATFM capacity constraints. These priorities consider constrained airport resources, such as ATFM slots, airport stands or ground handling personnel and different methods are studied how to communicate airline-internal priorities confidentially to external stakeholders for collaborative solutions, such as the assignment of reserve resources or ATFM slot swapping.
The integrated schedule recovery model is an extension of the Resource-Constrained Project Scheduling Problem and integrates aircraft turnaround operations with existing approaches for aircraft, crew and passenger recovery. The model is supposed to provide tactical decision support for airline operations controllers at look-ahead times of more than two hours prior to a scheduled hub bank. System-inherent uncertainties about process deviations and potential future disruptions are incorporated into the optimization via stochastic turnaround process times and the novel concept of stochastic delay cost functions. These functions estimate the costs of delay propagation and derive flight-specific downstream recovery capacities from historical operations data, such that scarce resources at the hub airport can be allocated to the most critical turnarounds.
The model is applied to the case study of a network carrier that aims at minimizing its tactical costs from several disturbance scenarios. The case study analysis reveals that optimal recovery solutions are very sensitive to the type, scope and intensity of a disturbance, such that there is neither a general optimal solution for different types of disturbance nor for disturbances of the same kind. Thus, airlines require a flexible and efficient optimization method, which considers the complex interdependencies among their constrained resources and generates context-specific solutions. To determine the efficiency of such an optimization method, its achieved network resilience should be studied in comparison to current procedures over longer periods of operation.
For the sample of analysed scenarios in this dissertation, it can be concluded that stand reallocation, ramp direct services, quick-turnaround procedures and flight retiming are very efficient recovery options when only a few flights obtain low and medium delays, i.e., 95% of the season. For disturbances which induce high delay into the entire airline network, a full integration of all considered recovery options is required to achieve a substantial reduction of tactical costs. Thereby, especially arrival and departure slot swapping are valuable options for the airline to redistribute its assigned ATFM delays onto those aircraft that have the least critical constraints in their downstream rotations.
The consideration of uncertainties in the downstream airline network reveals that an optimization based on deterministic delay costs may overestimate the tactical costs for the airline. Optimal recovery solutions based on stochastic delay costs differ significantly from the deterministic approach and are observed to result in less passenger rebooking at the hub airport.
Furthermore, the proposed schedule recovery model can define flight priorities and internal slot values for the airline. Results show that the priorities can be communicated confidentially to ATFM by using flight delay margins, while slot values may support future inter-airline slot trading mechanisms.