Data-driven estimation of flights’ hidden parameters
Paper ID
SIDs-2022-054
Conference
SESAR Innovation Days
Year
2022
Theme
Machine Learning II
Project Name
SESAR 2020 ER4 project SIMBAD
Keywords:
AI/ML, data-driven estimation, Hidden parameters, KPIs, prediction
Authors
George Vouros, Theodore Tranos, Konstantinos Blekas, Georgios Santipantakis, Marc Melgosa and Xavier Prats
DOI
–
Project Number
894241
Abstract
This paper presents a data-driven methodology for the estimation of flights’ hidden parameters, combining mechanistic and AI/ML models. In the context of this methodology the paper studies several AI/ML methods and reports on evaluation results for estimating hidden parameters, in terms of mean absolute error. In addition to the estimation of hidden parameters themselves, this paper examines how these estimations affect the prediction of KPIs regarding the efficiency of flights using a mechanistic model. Results show the accuracy of the proposed methods and the benefits of the proposed methodology. Indeed, the results show significant advances of data-driven methods to estimate hidden parameters towards predicting KPIs.